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Abstract Soybean [Glycine max] is an important oil and food plant for both humans and animals. Recent development in RNA 
sequencing (RNA-seq) technology provides a cost effective approach to analyzing transcriptomes of plants at different 
developmental stages and in responses to different biotic and abiotic challenges. Currently there are over 5 000 RNA-seq datasets in 
soybean plants publicly available at SRA database in the National Center for Biotechnology Information (NCBI). Such a large 
number of RNA-seq datasets provide soybean researchers an opportunity as well as a challenge for fully exploring the data to 
understand soybean biology. A number of research articles have been published on applications of RNA-seq in transcriptome analysis 
of soybean plants, covering a wide range of topics including growth and development, plant mineral nutrients, responses to 
environmental stresses, pathogens and pests. In this work we compile and review recent advances of RNA-seq transcriptome 
analyses including profiling of differential gene expression, gene alternative splicing, and gene regulatory networks in soybean plants, 
with key findings excerpted from each individual published article. 
Keywords Soybean; Glycine max; Transcriptome; RNA-sequencing; Gene expression; Alternative splicing 

Introduction 
Soybean [Glycine max] is an important food and oil crop, playing an important role in solving world hunger 
problem (Thoenes, 2004). The first soybean genome with 1.1- gigabase pairs was completely sequenced and 
46,430 protein coding genes were predicted (current Genebank assembly accession number: GCA_000004515.4) 
(Schmutz et al., 2010). Recently, three new soybean genomes were completely sequenced (Accession number: 
AGCA_003349995.1, GCA_002905335.2, GCA_001269945.2) (Shimomura et al., 2015; Shen et al., 2018). The 
availability of genome sequences from multiple cultivated soybean varieties and undomesticated soybean plants 
enhances our understanding of the domestication process of soybean plants and soybean breeding (Kim et al., 
2011). 

RNA sequencing, commonly known as RNA-seq, is a technology using next-generation sequencing (NGS) to 
identify and quantify RNA transcripts of a transcriptome in a biological sample (Chu and Corey, 2012). 
Specifically, RNA-seq has a resolution at one base-pair level, thus, it can be used to determine exon/intron 
boundaries, to identify alternative gene spliced transcripts, and gene expression levels over time or in different 
treatments. In addition, it can be used to identify the whole population and their abundance of all types of 
transcripts including mRNAs and non-coding RNAs, such as small RNA, miRNA, etc. (Wang et al., 2009). 
Therefore, RNA-seq is widely applied for gene expression profiling, identification of differentially expressed 
genes (DEGs), and identification of alternative splicing (AS). Sequence Read Archive (SRA) database at the 
National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov) stores RNA-seq data 
(https://www.ncbi.nlm.nih.gov/sra). We searched the SRA database and found, by the end of January 2021, there 
were 5 035 RNA-seq datasets, including 2 400 paired and 2 635 single library layouts. In this work, we compile 
and briefly review the recent advances in transcriptome analysis by using RNA-seq technology in soybean plants, 
the relevant publications are summarized in Table 1. It should be noted that transcriptome analysis carried out 
using microarray technology in soybean plants as well as transcriptome analysis using RNA-seq in wild soybean 
plants are not included in this work. 
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Table 1 Summary of recent publications employing RNA-seq technology in soybean research 

Research Subject References 

Growth and development 
Different tissue Severin et al. (2010); Wang et al. (2014); Shamimuzzaman and Vodkin (2013); Wong et al. (2013); 

Wu et al. (2019); Locke et al. (2018); Kim et al. (2016); Li et al. (2019) 
Seed development Jones and Vodkin (2013); Qi et al. (2018); Shi et al. (2014); Schmidt et al. (2011); Collakova et al. 

(2013); Aghamirzaie et al. (2013); Lambirth et al. (2015); Goettel et al. (2014); Yang et al. (2019); 
Yu et al. (2019); Redekar et al. (2015); Du et al. (2017); Liu et al. (2015) 

Seed germination Bellieny-Rabelo et al. (2016); Wang et al. (2016) 
Application in breeding Guo et al. (2018); Zhang et al. (2017a); Li et al. (2015); Song et al. (2016a) 

Response to abiotic stress 
Water deficit, waterlogging, 
or heat 

Prince et al. (2015); Song et al. (2016b); Wang et al. (2018); Nakayama et al. (2017); Chen et al. 
(2016b); Rodrigues et al. (2015)  

Shade Gong et al. (2014) 
Nutrients, toxic metals, and 
other chemicals 

Xue et al. (2018); Zeng et al. (2018b); Mo et al. (2019); Lv et al. (2020); Zeng et al. (2018a); Zhang 
et al. (2017b); Zeng et al. (2019); Whaley et al. (2015); Yang et al. (2018); Wulff et al. (2019); Zhao 
et al. (2020) 

Responses to nodulation or biotic stresses  
Nodule development Yuan et al. (2016); Yuan et al. (2017) 

Virus Chen et al. (2016a); Zhang et al. (2019); Jo et al. (2017)  
Pests: aphid, nematode and 
pyralid 

Neupane et al. (2019a); Neupane et al. (2019b); Song et al. (2019); Zeng et al. (2017); Zeng et al. 
(2019)  

Fungal disease Dong et al. (2018); Lanubile et al. (2015); McCabe et al. (2018); Calla et al. (2014)  
Bacterial diseases Kim et al. (2011) 

1 Growth and Developmental Regulation 
1.1 Different tissues during growth and development 
The report by Severin et al. (2010) represents an earlier application in soybean transcriptome analysis using 
RNA-seq. Hierarchical clustering of transcriptional profiles in fourteen diverse tissues reveals three clades with 
similar profiles: aerial, underground and seed tissues and more than 177 genes that are involved in the 
economically important seed filling process were identified (http://www.soybase.org/) (Severin et al., 2010). Wang 
et al. (2014) collected data from 11 meristematic tissues of soybean and found 54 132 annotated genes expressed 
with a total of 12 810 AS events generated from 7 084 genes, accounting for ~15.9% of 52 406 genes with two or 
more exons. 

Transcriptional reprogramming occurs during the functional transition of cotyledons from non-photosynthetic 
storage tissue to metabolically active photosynthetic tissue (Shamimuzzaman and Vodkin, 2013). RNA-seq data 
revealed highly differentially expressed candidate genes regulated by the NAC transcription factor include 
lipoxygenase, pectin methyl esterase inhibitor, DEAD/DEAH box helicase and homeobox associated proteins, and 
YABBY-regulated genes include AP2 transcription factor, fatty acid desaturase and WRKY transcription factor. 

Wong et al. (2013) investigated the molecular basis of floral initiation process using RNA-seq. A total of 2 951 
genes in shoot apical meristem and 13 609 genes in leaf with significant profile changes were identified. Most 
changes in mRNA level occurred after 1short-day treatment. Wu et al. (2019) used two common cultivars and four 
near-isogenic lines of maturity loci of soybean plants in elucidating global gene expression patterns under 
different photoperiod regimes. Their work provides novel insights in the complex molecular mechanisms of 
photoperiodic flowering control in soybean. Locke et al. (2018) examined the diurnal patterns of genes involved 
in photosynthesis-related processes in field-grown soybean transcriptomes and reported 21% of genes were 
differentially expressed over the course of the day. 
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To understand the molecular events in abscission process in soybean, Kim et al. (2016) performed RNA-seq 
analysis in abscission zones and after treating stem/petiole explants with ethylene. Their work revealed that 188 
abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, 
NAC, WRKY, YABBY, and auxin-related motifs. Li et al. (2019) identified DEGs in soybean somatic 
embryogenesis and regeneration processes. Exogenous hormone 2,4-D was used to treat immature embryos. There 
were 2 666 differentially expressed genes obtained including three genes in hormone pathways. These identified 
important genes in the soybean regeneration process provided a basis for accelerating the application of 
biotechnology to soybean for improving its breeding efficiency. 

1.2 Seed development 
Soybean seeds are an important source of proteins, oil, and carbohydrates used for food, feed, chemical, and 
biofuel production, thus studying the gene expression profiles in seed development is important for understanding 
this process. Jones and Vodkin (2013) examined gene expression in seven different stages of seed development 
using RNA-seq. Over one hundred gene models were identified with high expression exclusively in young seed 
stages, starting at four days after fertilization. Genes encoding storage proteins such as glycinin and 
beta-conglycinin reached to their highest expression levels at the stages of largest fresh weight, confirming these 
storage products are being rapidly accumulated before the seed begins the desiccation process. Qi et al. (2018) 
profiled the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed 
stages. Their analysis revealed 7 482 differentially expressed genes and 45 expression patterns clusters. 

Soybean cotyledon is the nutrient storage area in seeds and is critical for seed quality and yield. Cotyledon 
mutants are important for the genetic dissection of embryo patterning and seed development. Shi et al. (2014) 
characterized a soybean curled cotyledon (cco) mutant. RNA-seq identified 1 093 differentially expressed genes 
(DEGs) between WT and the cco mutant, and many DEGs were mapped to the hormone biosynthesis and signal 
transduction pathways. Schmidt et al. (2011) analyzed the storage protein knockdown (SP-) seeds and the wild 
type seeds. RNA-seq analysis identified 997 were down-regulated and 151 were up-regulated genes with more 
than 3-fold changes in SP- compared with wildtype seeds (Schmidt et al., 2011). Collakova et al. (2013) assessed 
detailed temporal transcriptional and metabolic changes in developing soybean embryos, and further using the 
same dataset, Aghamirzaie et al. (2013) identified different classes of alternatively spliced isoforms and 
corresponding changes in their levels. Conserved domain analyses revealed that AS resulted in global changes in 
the number, types, and extent of truncation of functional domains in protein variants (Aghamirzaie et al., 2015). 
Lambirth et al. (2015) used RNA-seq to survey gene expression in three transgenic soybean lines expressing 
recombinant protein in seed tissues. There was no correlation between recombinant protein expression level and 
the quantity of differentially expressed genes detected. 

Oil content in soybean seeds is an important breeding parameter. Goettel et al. (2014) sequenced the 
transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. A total of 8 
037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48 792 SNPs and 1 693 
small Indels) were identified among the lines. Similarly, Yang et al. (2019) performed transcriptome analysis on 
oil contents in developing seeds. Through weighted correlation network analysis, six co-expression modules 
associated with soybean seed oil content and 124 candidate genes potentially affecting soybean seed oil content 
were identified (Yang et al. 2019). Yu et al. (2019) selected four lines with extreme phenotypes, as well as high or 
low protein and oil content, from the chromosome segment substitution lines. Five specific genes were identified 
to be differentially expressed during seed development and subsequently analyzed for their regulatory relationship 
with miRNAs. The research provides a theoretical basis for the regulation of soybean quality traits. Redekar et al. 
(2015) compared gene expression profiles during seed development between low phytic acid lines (lpa) and a 
normal phytic acid line (PA). A total of 4 235 DEGs, including 512-transcription factor genes were identified. 
Their study provides a global perspective of transcriptional changes during soybean seed development in an lpa 
mutant. 
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To understand the gene expression networks controlling soybean seed set and size, Du et al. (2017) performed 
transcriptome analyses in three early seed developmental stages, using two genotypes with contrasting seed size. 
They identified modules of coexpressed genes and hub genes for each module and discovered specific modules 
for the large seed size variety and for seed developmental stages. This work provided new insights into the 
molecular networks underlying soybean seed size regulation. Seed number per pod is an important component of 
yield traits in soybean. Liu et al. (2015) identified a natural mutant with an increased number of four-seed pods 
from a cultivated soybean variety. To identify and understand the function of genes associated with this mutant 
trait, transcriptome sequencing was performed using three types of tissues: axillary buds, unfertilized ovaries, and 
young pods at three different growth stages, respectively. They reported there were 55 582 expressed genes and 4 
183 DEGs. These results show that the development of four-seed pods is associated with a complex network 
involving multiple physiological and metabolic pathways. However, the exact mutations remain to be identified. 

1.3 Seed germination 
Seed germination is a developmental process that produces a new plant from a seed. Bellieny-Rabelo et al. (2016) 
examined the transcriptional patterns of embryonic axes during germination using RNA-seq reads generated from 
soybean embryonic axes. Their results support glycolysis, Krebs cycle and cell wall re-modelling are critical 
processes. Effects of calcium on yield and nutritional qualities of soybean sprout were investigated (Wang et al., 
2016). A total of 1 912 genes and 460 proteins involved in the growth, storage material decomposition, and 
bioactive substance synthesis in soybean sprouts after treated with Ca2+ were identified. This study represents the 
first report of a comprehensive transcriptomic and proteomic analysis of soybean sprout in response to 
supplemental Ca2+. 

1.4 Application in soybean breeding 
Guo et al. (2018) reported that RNA-seq data generated from four soybean accessions. A total of 75 209 SNPs 
were identified, 89.1% of which were located in expressed regions and 27.0% resulted in amino acid changes. The 
validated SNPs were assessed by genotyping 393 wild and cultivated soybean accessions. These SNPs identified 
by RNA-seq provide a useful resource for genetic and genomic studies of soybean.  

RNA-seq has also been used for studying gene expression in F1 hybrids and their parents in soybean as heterosis 
has been widely used for increasing crop yield in plant breeding. Zhang et al. (2017a) identified a total of 681 and 
899 genes as being differentially expressed between two F1 hybrid lines and their parents, respectively; and 26 
common DEGs that showed transgressive up-regulation, representing potential candidate genes for heterosis in 
soybean F1 hybrids (Zhang et al., 2017a). Cytoplasmic male sterility (CMS) plays an important role in the 
production of hybrid seeds. However, the molecular mechanism of CMS in soybean remains unclear. Li et al. 
(2015) reported the comparative transcriptome analysis between cytoplasmic male sterile line NJCMS1A and its 
near-isogenic maintainer NJCMS1B in soybean. A total of 56 044 genes were mapped to the genome with 339 
down-regulated and 26 up-regulated in CMS line compared to the maintainer line. In addition, RNA profiles were 
compared in a soybean near-isogenic line (cgy-2-NIL) containing the cgy-2 allele, which did not encode the 
allergenic α-subunit of β-conglycinin, identified 2 193 genes down regulated and 1 350 genes up regulated, in two 
genotypes, including genes involved in arginine and proline metabolism, which is useful for hypoallergenic 
soybean breeding programs (Song et al., 2016a). 

2 Responses to Abiotic Stress 
2.1 Water deficit, waterlogging, or heat 
Environmental factors such as water deficit or waterlogging, heat, cold, and nutrient deficits are common for 
causing stress in field grown crops. Prince et al. (2015) analyzed the leaf tissue transcriptomes of two soybean 
lines: drought-susceptible (DS) Pana and drought-tolerant (DT) PI 567690. They reported 1 914 in DS and 670 
genes in DT with a greater than two-fold change in expression under drought conditions. Song et al. (2016b) 
reported 6 609 genes in the roots showed differential expression patterns in response to different water-deficit 
stress levels in soybean Williams 82 genotype including tissue-specific or water-deficit levels specific regulation 
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of TFs (Song et al., 2016b). Wang et al. (2018) determined the transcriptional responses of soybean to heat, 
drought and combined stress using RNA-seq. They reported that 1 468 and 1 220 up-regulated and 1 146 and 686 
down-regulated genes at 8 h and 24 h after treatment. Comparing the heat, drought and the combined 
stress-responsive genes identified potential new targets for enhancing stress tolerance of soybean. Their analysis 
suggests that a synergistic response to drought and heat may exist in soybean. Song et al. (2020) performed a 
genome-wide analysis of AS events in soybean roots grown under various drought conditions and identified 385, 
989, 1 429, and 465 AS events that were significantly differentially spliced under very mild drought stress, mild 
drought stress, severe drought stress, and recovery after severe drought conditions, respectively.  

Nakayama et al. (2017) analyzed root transcriptional responses between flood-tolerant (Embrapa 45) and 
flood-sensitive (BR4) soybean cultivars under hypoxic stress conditions with RNA-seq. Between cultivars, 
Embrapa 45 showed less up- and more down-regulated genes. Over 6 600 to 8 300 genes were up-regulated and 8 
100 to 11 000 genes were down-regulated in roots sampled at different time over a 24-hour period of submergence 
treatment. All genes encoding the key enzymes in the glycolysis/gluconeogenesis pathway were up-regulated. 
Among the down-regulated genes, eight of them encoded peroxidases, which catalyze the conversion of 
coumaroyl alcohol to hydroxy-phenyl lignin in the final step of lignin biosynthesis. The study provides a 
foundation for further genomic examination of submergence or flooding tolerance in soybean plants.  

Chen et al. (2016b) identified a total of 2 724 and 3 498 DEGs in leaf tissues were identified under drought and 
flooding treatments, respectively. This study has revealed the involvement of TFs, transporters, and photosynthetic 
genes. Rodrigues et al. (2015) reported soybean leaf transcriptome fluctuations under water deficit stress during a 
24-h time course. There were 4 866 DEGs in soybean plants in response to water deficit. Of these genes, 3 715 
were differentially expressed during the light period, from which approximately 9.55% were observed in both 
light and darkness. There were 887 genes either up- or down-regulated in different periods of the day. Their work 
identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and 
genes whose expression oscillates under conditions of water deficit.  

2.2 Shade 
Soybean is often planted in intercropping, such as with maize, for fully utilizing the land and light resources, thus 
studying shading effects is needed in such a system. Gong et al. (2014) analyzed the transcriptome of shaded 
soybean leaves via RNA-seq technology. They reported that transcription of 1,085 genes in mature leaves and 1 
847 genes in young leaves were significantly affected by shade.  

2.3 Nutrients and toxic metals 
Phosphorus (P) is an essential plant macronutrient. Low phosphate (Pi) availability in soils often limits plant 
growth and yield. Xue et al. (2018) conducted RNA-seq analysis in soybean nodules grown under P-sufficient and 
P-deficient conditions. Nodule transcript profiling revealed that a total of 2 055 genes exhibited differential 
expression patterns between Pi sufficient and deficient conditions. Their results suggest that a complex 
transcriptional regulatory network participates in soybean nodule adaption to Pi starvation. Zeng et al. (2018b) 
performed a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 
h). A total of 533 genes were found to be differentially expressed in response to Pi deprivation, including 303 up 
regulated and 230 repressed by Pi deprivation. Mo et al. (2019) reported, between two Pi availability treatments, a 
total of 155 metabolites differentially accumulated in soybean roots, and a total of 1 644 DEGs were identified in 
soybean roots, including 1 199 up-regulated and 445 down-regulated genes. Lv et al. (2020) examined the 
response mechanisms of circular RNAs (circRNAs) to low Pi (LP) stress using the roots of two contrasting 
soybean genotypes, Bogao (a LP-sensitive genotype) and Nannong 94156 (a LP-tolerant genotype). In total, 371 
novel circRNA candidates, including 120 significantly differentially expressed (DE) circRNAs, were identified 
across different P levels and genotypes. Integrating all transcriptome data generated under P deficiency treatments 
may find consistent patterns of gene regulation across these multiple experiments, thus, increase our 
understanding of the regulation mechanism of plant responses. 
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Zinc (Zn) is an essential micronutrient in plants. Zeng et al. (2018a) analyzed the transcriptomes of soybean 
leaves and roots in response to Zn deficiency through RNA-seq. A total of 614 and 1 011 genes were differentially 
expressed in leaves and roots, respectively, and 88 genes were common in both leaves and roots. Among the 
DEGs, 20 DEGs are potentially involved in Zn homeostasis and nine DEGs were found to contain 
zinc-deficiency-response element in their promoter regions. Their results could provide comprehensive insights 
into the soybean response to Zn deficiency. Cadmium (Cd) is a common pollutant heavy metal. Zhang et al. 
(2017b) investigated the molecular mechanism of soybean root responding to Cd stress. Soybean seedlings (7-day 
old) were stressed by Cd (75 Μmol·L-1) for 0, 4, 8, 12 and 48 h. Comparative transcriptome analysis showed 244, 
1545, 442 and 1401 of genes responded to the four Cd treatments, respectively, and total 2 670 DEGs were 
identified. Aluminum (Al) toxicity is a major problem on acid soils. Zhao et al. (2020) carried out comparative 
transcriptome analysis of two contrasting soybean varieties in response to Al stress. They identified a total of 354 
Al-tolerance related genes, showed up-regulated expression by Al in the Al-tolerant soybean variety.  

Salt stress causes stunting growth, biomass and yield reduction in soybean. Zeng et al. (2019) used salt tolerant 
and sensitive soybean lines treated with 250 mM NaCl. A total of 2 374, 998, 1 746, and 630 DEGs between 
salt-tolerant line and salt-sensitive line, were found at 0, 6, 12, and 24 h after treatment, respectively. The 
expression patterns of 154 common DEGs among all the time points were examined. 

2.4 Other chemicals  
Whaley et al. (2015) reported RNA-seq analysis of two soybean cultivars including an ozone intolerant cultivar 
(Mandarin-Ottawa) and an ozone resistant cultivar (Fiskeby III) following exposure to ozone. Acid rain influences 
soybean growth and productivity. Yang et al. (2018) conducted RNA-seq to examine changes in gene expression 
when soybean was exposed to simulated acid rain (SAR). In total, 54 175 expression genes were found, including 
2 016 DEGs. A total of 416 genes were considered to be closely related to the response to SAR. These genes 
related to the regulation of sulfur and nitrogen metabolism, carbohydrate metabolism, photosynthesis, and reactive 
oxygen species were among those DEGs in response to SAR. 

Neonicotinoids are widely used systemic insecticides that have been associated with spider mite outbreaks on 
diverse plants. Wulff et al. (2019) used RNA-seq to explore how neonicotinoids modify gene expression in 
soybean by exposing soybean to two neonicotinoid insecticides, thiamethoxam applied to seeds and imidacloprid 
applied as a soil drench and exposing a subset of these plants to spider mites (Tetranychus cinnabarinus). 
Applications of both insecticides downregulated genes involved in plant-pathogen interactions, phytohormone 
pathways, phenylpropanoid pathway, and cell wall biosynthesis. These effects were especially evident in plants 
exposed to thiamethoxam.  

3 Responses to Nodulation or Biotic Stress 
3.1 Nodule development 
Soybean plants establish a symbiosis with nitrogen fixing bacteria by developing nodules. This process plays a 
significant agronomic and ecological role in soybean production. Yuan et al. (2016) reported differential gene 
expression responding to different rhizobium strains in soybean roots. Two symbiotic systems (Bradyrhizobium 
japonicum strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean) with notable different nodulation 
phenotypes were studied. The DEGs uncovered in this study provides molecular candidates for better 
understanding the mechanisms of symbiotic host-specificity and explaining the different symbiotic effects 
between soybean roots inoculated with different strains. Yuan et al. (2017) further investigated differential gene 
expression of root nodules at five developmental stages inoculated with B. japonicum strain 113-2. Genes 
primarily encoding symbiotic nitrogen fixation-related proteins, cysteine proteases, cystatins and cysteine-rich 
proteins, as well as proteins involving plant-pathogen interactions were identified. Their study provides molecular 
material for further investigations into the mechanisms of nitrogen fixation at different soybean developmental 
stages. 



 
 

Computational Molecular Biology 2021, Vol.11, No.1, 1-14 
http://bioscipublisher.com/index.php/cmb 

 
 

7 

3.2 Virus 
Plant virus may affect plant growth using a regulation mechanism via microRNAs and associated host target genes. 
Chen et al. (2016a) performed small RNA (sRNA)-seq, degradome-seq and as well as a genome-wide 
transcriptome analysis to profile the global gene and miRNA expression in soybean following infections by three 
different Soybean mosaic virus (SMV) isolates. Their analyses revealed a total of 253 soybean miRNAs and 125 
transcripts as potential miRNA targets, as well as total 2 679 DEGs in response to SMV infection. Zhang et al. 
(2019) compared the transcriptomes of SMV infected plants and reported a total of 3 548 and 4 319 DEGs in 
soybean plants infected with SMV under normal light and in the shade, respectively.  

Jo et al. (2017) used publicly available soybean transcriptome data to identify viruses infecting soybean. Of the 
screened transcriptomes, a soybean transcriptome for soybean seed development analysis was found containing 
several virus-associated sequences. Five viruses, including SMV, infecting soybean were identified by de novo 
transcriptome assembly. A near complete consensus genome sequence of SMV China was assembled using 
transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely 
related to SMV isolates from South Korea. Their work demonstrated the application of soybean transcriptome data 
for virus genome assembly. 

3.3 Pests: aphid, nematode and pyralid 
Neupane et al. (2019b) investigated transcriptome responses of soybean plants colonized by soybean aphid (Aphis 
glycines Matsumura; SBA) including avirulent and virulent biotypes after 11 days of feeding. Ten RNA datasets 
are reported with 266 million sequence reads (55.2 GB) obtained from pooled samples derived from the leaves 
collected at day 1 and day 11 post SBA infestation. However, the data have not been thoroughly analyzed. 
Neupane et al. (2019a) generated RNA-seq data from soybean cyst nematode (Heterodera glycines; SCN) 
-resistant and SCN-susceptible soybean cultivars with a combination of soybean aphid infection treatment to 
evaluate the three-way interactions. Song et al. (2019) used soybean cultivar Lee, which exhibits resistant to 
SCNT (a new type of SCN) and susceptible to HG 1.2.3.4.7 (SCNs) and identified 3 746 and 602 DEGs in the 
resistant interaction and in the susceptible interaction, respectively.  

Bean pyralid is one of the major soybean leaf-feeding insects in China. Zeng et al. (2017) identified 1 744 DEGs 
in the leaves of two different varieties fed by bean pyralid for 48 h, compared to 0 h. Zeng et al. (2019) performed 
small RNA and transcriptome sequencing in bean pyralid larvae resistant and susceptible soybean varieties, and 
differentially expressed miRNAs and their target genes were identified in both varieties in comparing controls 
with larvae feeding treatments as well as between varieties.  

3.4 Fungal disease 
Soybean downy mildew (SDM) caused by Peronospora manshurica (Pm) is a common disease of soybean. To 
examine the defense mechanism of soybean response to Pm infection, differential expression of WRKY TFs in 
SDM-high resistant (HR) and SDM-high susceptible (HS) genotypes were analyzed (Dong et al., 2018). Total 22 
WRKY TFs were differentially expressed in HR and HS genotype, while 16 WRKY TFs were found to be specific 
in response to fungal inoculation. Their result indicates that the GmWRKY31 might regulate the GmSAGT1 gene 
expression and involve in SA-mediated immune responses in soybean. 

Fusarium oxysporum is one of the most common fungal pathogens in soybean. Lanubile et al. (2015) investigated 
the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic 
isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). A peak of highly differentially expressed genes 
(HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in 
response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). 
Their data may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum. 
Brown stem rot, a fungal disease caused by Phialophora gregata, reduces soybean yield. McCabe et al. (2018) 
conducted RNA-seq of infected and mock-infected leaf, stem, and root tissues of a resistant (PI 437970, Rbs3) 
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and susceptible (Corsoy 79) genotype. A cluster of genes encoding receptor-like proteins were identified as 
candidates for the Rbs3 resistance gene. Their research demonstrates the utility of combining contrasting 
genotypes, gene expression, and classical genetic studies to characterize complex disease resistance loci. 

Sclerotinia sclerotiorum is a serious fungal pathogen. The major virulence factor of this pathogen is oxalic acid 
(OA). Plants that express enzymes that degrade OA, such as oxalate oxidase (OxO), are very resistant to 
S. sclerotiorum. Calla et al. (2014) compared the gene expression levels between leaves of a transgenic soybean 
carrying an OxO gene (OxO) and its parent AC Colibri (AC) using both microarray and RNA‐seq technology. A 
total of 936 DEGs were identified, and among them, 630 showed up‐regulation in both AC and OxO lines 
infiltrated with OA, relative to the samples infiltrated with water, at pH 2.4. Ferritin, a gene that encodes for an 
iron storage protein, was one of the strongest genes induced by OA. These results suggest that S. sclerotiorum 
benefits from the ability of OA to free iron from plant proteins by inducing host cell death (Calla et al., 2014). 

3.5 Bacterial diseases 
Xanthomonas axonopodis pv. glycines (Xag) causes bacterial leaf pustule (BLP) disease in soybean. Kim et al. 
(2011) investigated the plant defense mechanisms against Xag using BLP-susceptible and BLP-resistant soybean 
near isogenic lines (NIL) and reported 1 978 and 783 genes were up- or down-regulated, respectively, in the 
BLP-resistant NIL relative to the BLP-susceptible NIL. Pathogen-associated molecular pattern (PAMP) and 
damage-associated molecular pattern (DAMP) receptors and the genes induced by these receptors were highly 
expressed in the BLP-resistant NIL. Their results indicate that the defense mechanisms involved in the recognition 
of PAMPs or DAMPs and a high level of accumulation of defense-related gene products may contribute to BLP 
resistance in soybean. 

4 Applications of RNA-seq Data 
Yu et al. (2014) constructed the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser 
(Gbrowse) as the core platform by integrating microarray expression profiling with 255 samples from 14 groups’ 
experiments and mRNA-seq data with 30 samples from four groups’ experiments, including spatial and temporal 
transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a 
gene co-expression regulatory network containing 23 267 genes and 1 873 miRNA-target pairs, and a group of 
acyl-lipid pathways containing 221 enzymes and more than 1 550 genes. The SFGD is publically accessible 
(http://bioinformatics.cau.edu.cn/SFGD/). Using the gene expression values of RNA-seq data generated by the 
Soybean Gene Atlas project, Wang et al. (2019a) constructed a database of gene regulatory network which was 
named as SoyCSN (Soybean context-specific network, http://soykb.org/SoyCSN). The database allows users to 
search and download co-expressed genes and predicted protein-protein interactomes across all tissues. It is a 
useful resource for systematically exploring gene regulatory mechanisms and gene relationships for soybean 
researchers and molecular breeders. The homeodomain leucine zipper (HD-Zip) transcription factor family is one 
of the largest plant specific super families including genes with roles in modulation of plant growth and response 
to environmental stresses. Belamkar et al. (2014) identified 101 members of the HD-Zip gene family in soybean 
cv. ‘Williams 82’, and characterized their expression under dehydration and salt stress. Recently, Machado et al. 
(2020) analyzed 1 298 RNA-Seq samples and constructed a comprehensive soybean (Glycine max) expression 
atlas. They found that 94% of the annotated genes (52 737/56 044) had detectable expression in at least one 
sample. The dataset can be downloaded or accessed through a user-friendly web interface 
(http://venanciogroup.uenf.br/resources/). This transcriptome atlas will facilitate research on soybean genetics and 
genomics. Almeida-Silva et al. (2020) investigated global gene co-expression networks constructed with data 
from 1 284 RNA-Seq experiments from 15 distinct tissues and predicted functions for 93 of 106 hubs without 
functional description in soybean.  

Publicly available RNA-seq datasets are rich resources for datamining of genes with specific functionalities. 
Nawaz et al. (2017) performed genome-wide digital expression analysis of cellulose synthase (CS) gene 
superfamily, consisting of 78 putative CS genes. Liew et al. (2013) analyzed the RNA-seq data, which were 
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generated by Wong et al. (2013), for identification of histone modifiers and RNA silencing genes in soybean. 
Their analysis reveals that the extensive activation of genes that are usually involved in the epigenetic 
programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral 
development following an exposure to inductive conditions. Zhu et al. (2013) developed an automated 
bioinformatics method to predict gene regulatory networks from the quantitative expression values of DEGs based 
on RNA-seq transcriptome data of a cell in different stages and conditions, integrating transcriptional, genomic 
and gene function data. They applied the method to the RNA-seq transcriptome data generated for soybean root 
hair cells in three different development stages of nodulation after rhizobium infection (Libault et al., 2010).  

Mostly likely we have missed out some publications related RNA-seq applications in soybean research, however, 
we noticed that most of transcriptome analyses, as reviewed above, performed identification of DEGs, GO 
analysis and pathway analysis. Only a few of published articles carried out AS analysis (Wang et al., 2014; 
Aghamirzaie et al., 2015; Wang et al., 2019b; Song et al. 2020). Given the importance of AS in regulation of gene 
functions in growth and development and in response to various biotic and abiotic stresses (Reddy et al., 2013; 
Staiger and Brown, 2013), AS analysis needs to be included as an essential part of RNA-seq data analysis in 
plants. Thus, such a large amount of RNA-seq datasets publicly available in soybean plants provide an 
unprecedented opportunity for identifying alternatively spliced genes and novel transcripts isoforms generated by 
AS in this plant. Further integration of all available RNA-seq data for advancing our understanding of gene 
expression regulatory networks remains to be a challenge, however, will be warranted to greatly benefit soybean 
plant researchers. 
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